Copied to
clipboard

?

G = C42.176D10order 320 = 26·5

176th non-split extension by C42 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.176D10, C10.382- (1+4), C4⋊Q814D5, C4⋊C4.125D10, (Q8×Dic5)⋊23C2, (C2×Q8).148D10, C20.6Q825C2, C42⋊D5.9C2, C20.138(C4○D4), C4.42(D42D5), (C4×C20).216C22, (C2×C10).275C24, (C2×C20).108C23, D103Q8.14C2, Dic5.Q842C2, C4⋊Dic5.254C22, (Q8×C10).142C22, C22.296(C23×D5), C57(C22.35C24), (C4×Dic5).172C22, (C2×Dic5).283C23, C10.D4.63C22, (C22×D5).120C23, D10⋊C4.154C22, C2.39(Q8.10D10), (C5×C4⋊Q8)⋊17C2, C4⋊C4⋊D5.4C2, C10.101(C2×C4○D4), C2.65(C2×D42D5), (C2×C4×D5).157C22, (C5×C4⋊C4).218C22, (C2×C4).221(C22×D5), SmallGroup(320,1403)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.176D10
C1C5C10C2×C10C22×D5C2×C4×D5D103Q8 — C42.176D10
C5C2×C10 — C42.176D10

Subgroups: 558 in 192 conjugacy classes, 95 normal (19 characteristic)
C1, C2, C2 [×2], C2, C4 [×2], C4 [×13], C22, C22 [×3], C5, C2×C4, C2×C4 [×6], C2×C4 [×9], Q8 [×4], C23, D5, C10, C10 [×2], C42, C42 [×5], C22⋊C4 [×6], C4⋊C4 [×4], C4⋊C4 [×16], C22×C4, C2×Q8 [×2], Dic5 [×7], C20 [×2], C20 [×6], D10 [×3], C2×C10, C42⋊C2, C4×Q8 [×2], C22⋊Q8 [×2], C42.C2 [×5], C422C2 [×4], C4⋊Q8, C4×D5 [×2], C2×Dic5, C2×Dic5 [×6], C2×C20, C2×C20 [×6], C5×Q8 [×4], C22×D5, C22.35C24, C4×Dic5, C4×Dic5 [×4], C10.D4 [×10], C4⋊Dic5 [×6], D10⋊C4 [×6], C4×C20, C5×C4⋊C4 [×4], C2×C4×D5, Q8×C10 [×2], C20.6Q8, C42⋊D5, Dic5.Q8 [×4], C4⋊C4⋊D5 [×4], Q8×Dic5 [×2], D103Q8 [×2], C5×C4⋊Q8, C42.176D10

Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], D5, C4○D4 [×2], C24, D10 [×7], C2×C4○D4, 2- (1+4) [×2], C22×D5 [×7], C22.35C24, D42D5 [×2], C23×D5, C2×D42D5, Q8.10D10 [×2], C42.176D10

Generators and relations
 G = < a,b,c,d | a4=b4=1, c10=a2, d2=a2b2, ab=ba, cac-1=dad-1=a-1, cbc-1=b-1, dbd-1=a2b-1, dcd-1=b2c9 >

Smallest permutation representation
On 160 points
Generators in S160
(1 81 11 91)(2 92 12 82)(3 83 13 93)(4 94 14 84)(5 85 15 95)(6 96 16 86)(7 87 17 97)(8 98 18 88)(9 89 19 99)(10 100 20 90)(21 150 31 160)(22 141 32 151)(23 152 33 142)(24 143 34 153)(25 154 35 144)(26 145 36 155)(27 156 37 146)(28 147 38 157)(29 158 39 148)(30 149 40 159)(41 125 51 135)(42 136 52 126)(43 127 53 137)(44 138 54 128)(45 129 55 139)(46 140 56 130)(47 131 57 121)(48 122 58 132)(49 133 59 123)(50 124 60 134)(61 105 71 115)(62 116 72 106)(63 107 73 117)(64 118 74 108)(65 109 75 119)(66 120 76 110)(67 111 77 101)(68 102 78 112)(69 113 79 103)(70 104 80 114)
(1 32 47 79)(2 80 48 33)(3 34 49 61)(4 62 50 35)(5 36 51 63)(6 64 52 37)(7 38 53 65)(8 66 54 39)(9 40 55 67)(10 68 56 21)(11 22 57 69)(12 70 58 23)(13 24 59 71)(14 72 60 25)(15 26 41 73)(16 74 42 27)(17 28 43 75)(18 76 44 29)(19 30 45 77)(20 78 46 31)(81 151 131 103)(82 104 132 152)(83 153 133 105)(84 106 134 154)(85 155 135 107)(86 108 136 156)(87 157 137 109)(88 110 138 158)(89 159 139 111)(90 112 140 160)(91 141 121 113)(92 114 122 142)(93 143 123 115)(94 116 124 144)(95 145 125 117)(96 118 126 146)(97 147 127 119)(98 120 128 148)(99 149 129 101)(100 102 130 150)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 10 57 46)(2 45 58 9)(3 8 59 44)(4 43 60 7)(5 6 41 42)(11 20 47 56)(12 55 48 19)(13 18 49 54)(14 53 50 17)(15 16 51 52)(21 79 78 22)(23 77 80 40)(24 39 61 76)(25 75 62 38)(26 37 63 74)(27 73 64 36)(28 35 65 72)(29 71 66 34)(30 33 67 70)(31 69 68 32)(81 90 121 130)(82 129 122 89)(83 88 123 128)(84 127 124 87)(85 86 125 126)(91 100 131 140)(92 139 132 99)(93 98 133 138)(94 137 134 97)(95 96 135 136)(101 104 159 142)(102 141 160 103)(105 120 143 158)(106 157 144 119)(107 118 145 156)(108 155 146 117)(109 116 147 154)(110 153 148 115)(111 114 149 152)(112 151 150 113)

G:=sub<Sym(160)| (1,81,11,91)(2,92,12,82)(3,83,13,93)(4,94,14,84)(5,85,15,95)(6,96,16,86)(7,87,17,97)(8,98,18,88)(9,89,19,99)(10,100,20,90)(21,150,31,160)(22,141,32,151)(23,152,33,142)(24,143,34,153)(25,154,35,144)(26,145,36,155)(27,156,37,146)(28,147,38,157)(29,158,39,148)(30,149,40,159)(41,125,51,135)(42,136,52,126)(43,127,53,137)(44,138,54,128)(45,129,55,139)(46,140,56,130)(47,131,57,121)(48,122,58,132)(49,133,59,123)(50,124,60,134)(61,105,71,115)(62,116,72,106)(63,107,73,117)(64,118,74,108)(65,109,75,119)(66,120,76,110)(67,111,77,101)(68,102,78,112)(69,113,79,103)(70,104,80,114), (1,32,47,79)(2,80,48,33)(3,34,49,61)(4,62,50,35)(5,36,51,63)(6,64,52,37)(7,38,53,65)(8,66,54,39)(9,40,55,67)(10,68,56,21)(11,22,57,69)(12,70,58,23)(13,24,59,71)(14,72,60,25)(15,26,41,73)(16,74,42,27)(17,28,43,75)(18,76,44,29)(19,30,45,77)(20,78,46,31)(81,151,131,103)(82,104,132,152)(83,153,133,105)(84,106,134,154)(85,155,135,107)(86,108,136,156)(87,157,137,109)(88,110,138,158)(89,159,139,111)(90,112,140,160)(91,141,121,113)(92,114,122,142)(93,143,123,115)(94,116,124,144)(95,145,125,117)(96,118,126,146)(97,147,127,119)(98,120,128,148)(99,149,129,101)(100,102,130,150), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,57,46)(2,45,58,9)(3,8,59,44)(4,43,60,7)(5,6,41,42)(11,20,47,56)(12,55,48,19)(13,18,49,54)(14,53,50,17)(15,16,51,52)(21,79,78,22)(23,77,80,40)(24,39,61,76)(25,75,62,38)(26,37,63,74)(27,73,64,36)(28,35,65,72)(29,71,66,34)(30,33,67,70)(31,69,68,32)(81,90,121,130)(82,129,122,89)(83,88,123,128)(84,127,124,87)(85,86,125,126)(91,100,131,140)(92,139,132,99)(93,98,133,138)(94,137,134,97)(95,96,135,136)(101,104,159,142)(102,141,160,103)(105,120,143,158)(106,157,144,119)(107,118,145,156)(108,155,146,117)(109,116,147,154)(110,153,148,115)(111,114,149,152)(112,151,150,113)>;

G:=Group( (1,81,11,91)(2,92,12,82)(3,83,13,93)(4,94,14,84)(5,85,15,95)(6,96,16,86)(7,87,17,97)(8,98,18,88)(9,89,19,99)(10,100,20,90)(21,150,31,160)(22,141,32,151)(23,152,33,142)(24,143,34,153)(25,154,35,144)(26,145,36,155)(27,156,37,146)(28,147,38,157)(29,158,39,148)(30,149,40,159)(41,125,51,135)(42,136,52,126)(43,127,53,137)(44,138,54,128)(45,129,55,139)(46,140,56,130)(47,131,57,121)(48,122,58,132)(49,133,59,123)(50,124,60,134)(61,105,71,115)(62,116,72,106)(63,107,73,117)(64,118,74,108)(65,109,75,119)(66,120,76,110)(67,111,77,101)(68,102,78,112)(69,113,79,103)(70,104,80,114), (1,32,47,79)(2,80,48,33)(3,34,49,61)(4,62,50,35)(5,36,51,63)(6,64,52,37)(7,38,53,65)(8,66,54,39)(9,40,55,67)(10,68,56,21)(11,22,57,69)(12,70,58,23)(13,24,59,71)(14,72,60,25)(15,26,41,73)(16,74,42,27)(17,28,43,75)(18,76,44,29)(19,30,45,77)(20,78,46,31)(81,151,131,103)(82,104,132,152)(83,153,133,105)(84,106,134,154)(85,155,135,107)(86,108,136,156)(87,157,137,109)(88,110,138,158)(89,159,139,111)(90,112,140,160)(91,141,121,113)(92,114,122,142)(93,143,123,115)(94,116,124,144)(95,145,125,117)(96,118,126,146)(97,147,127,119)(98,120,128,148)(99,149,129,101)(100,102,130,150), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,57,46)(2,45,58,9)(3,8,59,44)(4,43,60,7)(5,6,41,42)(11,20,47,56)(12,55,48,19)(13,18,49,54)(14,53,50,17)(15,16,51,52)(21,79,78,22)(23,77,80,40)(24,39,61,76)(25,75,62,38)(26,37,63,74)(27,73,64,36)(28,35,65,72)(29,71,66,34)(30,33,67,70)(31,69,68,32)(81,90,121,130)(82,129,122,89)(83,88,123,128)(84,127,124,87)(85,86,125,126)(91,100,131,140)(92,139,132,99)(93,98,133,138)(94,137,134,97)(95,96,135,136)(101,104,159,142)(102,141,160,103)(105,120,143,158)(106,157,144,119)(107,118,145,156)(108,155,146,117)(109,116,147,154)(110,153,148,115)(111,114,149,152)(112,151,150,113) );

G=PermutationGroup([(1,81,11,91),(2,92,12,82),(3,83,13,93),(4,94,14,84),(5,85,15,95),(6,96,16,86),(7,87,17,97),(8,98,18,88),(9,89,19,99),(10,100,20,90),(21,150,31,160),(22,141,32,151),(23,152,33,142),(24,143,34,153),(25,154,35,144),(26,145,36,155),(27,156,37,146),(28,147,38,157),(29,158,39,148),(30,149,40,159),(41,125,51,135),(42,136,52,126),(43,127,53,137),(44,138,54,128),(45,129,55,139),(46,140,56,130),(47,131,57,121),(48,122,58,132),(49,133,59,123),(50,124,60,134),(61,105,71,115),(62,116,72,106),(63,107,73,117),(64,118,74,108),(65,109,75,119),(66,120,76,110),(67,111,77,101),(68,102,78,112),(69,113,79,103),(70,104,80,114)], [(1,32,47,79),(2,80,48,33),(3,34,49,61),(4,62,50,35),(5,36,51,63),(6,64,52,37),(7,38,53,65),(8,66,54,39),(9,40,55,67),(10,68,56,21),(11,22,57,69),(12,70,58,23),(13,24,59,71),(14,72,60,25),(15,26,41,73),(16,74,42,27),(17,28,43,75),(18,76,44,29),(19,30,45,77),(20,78,46,31),(81,151,131,103),(82,104,132,152),(83,153,133,105),(84,106,134,154),(85,155,135,107),(86,108,136,156),(87,157,137,109),(88,110,138,158),(89,159,139,111),(90,112,140,160),(91,141,121,113),(92,114,122,142),(93,143,123,115),(94,116,124,144),(95,145,125,117),(96,118,126,146),(97,147,127,119),(98,120,128,148),(99,149,129,101),(100,102,130,150)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,10,57,46),(2,45,58,9),(3,8,59,44),(4,43,60,7),(5,6,41,42),(11,20,47,56),(12,55,48,19),(13,18,49,54),(14,53,50,17),(15,16,51,52),(21,79,78,22),(23,77,80,40),(24,39,61,76),(25,75,62,38),(26,37,63,74),(27,73,64,36),(28,35,65,72),(29,71,66,34),(30,33,67,70),(31,69,68,32),(81,90,121,130),(82,129,122,89),(83,88,123,128),(84,127,124,87),(85,86,125,126),(91,100,131,140),(92,139,132,99),(93,98,133,138),(94,137,134,97),(95,96,135,136),(101,104,159,142),(102,141,160,103),(105,120,143,158),(106,157,144,119),(107,118,145,156),(108,155,146,117),(109,116,147,154),(110,153,148,115),(111,114,149,152),(112,151,150,113)])

Matrix representation G ⊆ GL8(𝔽41)

10000000
01000000
00100000
00010000
0000390350
0000039035
000035020
000003502
,
174014110000
12414140000
13221710000
281340240000
0000173500
000072400
0000001735
000000724
,
10230110000
18133000000
343528180000
393423310000
0000003435
00000070
00007600
000034000
,
31180300000
61030360000
101928320000
19023130000
00000071
0000003434
0000344000
00007700

G:=sub<GL(8,GF(41))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,39,0,35,0,0,0,0,0,0,39,0,35,0,0,0,0,35,0,2,0,0,0,0,0,0,35,0,2],[17,1,13,28,0,0,0,0,40,24,22,13,0,0,0,0,14,14,17,40,0,0,0,0,11,14,1,24,0,0,0,0,0,0,0,0,17,7,0,0,0,0,0,0,35,24,0,0,0,0,0,0,0,0,17,7,0,0,0,0,0,0,35,24],[10,18,34,39,0,0,0,0,23,13,35,34,0,0,0,0,0,30,28,23,0,0,0,0,11,0,18,31,0,0,0,0,0,0,0,0,0,0,7,34,0,0,0,0,0,0,6,0,0,0,0,0,34,7,0,0,0,0,0,0,35,0,0,0],[31,6,10,19,0,0,0,0,18,10,19,0,0,0,0,0,0,30,28,23,0,0,0,0,30,36,32,13,0,0,0,0,0,0,0,0,0,0,34,7,0,0,0,0,0,0,40,7,0,0,0,0,7,34,0,0,0,0,0,0,1,34,0,0] >;

50 conjugacy classes

class 1 2A2B2C2D4A4B4C···4H4I4J4K4L4M···4Q5A5B10A···10F20A···20L20M···20T
order12222444···444444···45510···1020···2020···20
size111120224···41010101020···20222···24···48···8

50 irreducible representations

dim1111111122222444
type++++++++++++--
imageC1C2C2C2C2C2C2C2D5C4○D4D10D10D102- (1+4)D42D5Q8.10D10
kernelC42.176D10C20.6Q8C42⋊D5Dic5.Q8C4⋊C4⋊D5Q8×Dic5D103Q8C5×C4⋊Q8C4⋊Q8C20C42C4⋊C4C2×Q8C10C4C2
# reps1114422124284248

In GAP, Magma, Sage, TeX

C_4^2._{176}D_{10}
% in TeX

G:=Group("C4^2.176D10");
// GroupNames label

G:=SmallGroup(320,1403);
// by ID

G=gap.SmallGroup(320,1403);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,120,758,219,100,675,297,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^10=a^2,d^2=a^2*b^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=b^-1,d*b*d^-1=a^2*b^-1,d*c*d^-1=b^2*c^9>;
// generators/relations

׿
×
𝔽